Select Page

China supplier Industrial Transmission Gear Reducer Conveyor Parts C2060/C2062 Double Pitch Conveyor Chains

Product Description

Double Pitch Conveyor Chains

ISO
Chain No.
ANSI
Chain No.
P b1 d2 L3 L Lc
mm mm mm mm mm mm
C212A C2060 38.10 12.57 5.94 14.3 38.6 40.6
C212AL C2062

 

 

CONVEYOR CHAIN DESIGNED AND MANUFACTURED FOR THE MOST DEMXIHU (WEST LAKE) DIS. OF ENVIRONMENTS

HangZhou Star Machine Technology Co.,ltd.  provides the highest quality materials and manufacturing methods to suit the most arduous of conveyor chain applications  – from the transport of biomass fuels, to the recycling industry, paper & pulp, cement, steel-work, the wood industry and food processing.
Our conveyor chains, sprocket wheels and attachments are case-hardened to achieve the optimum balance between strength, durability and resistance to wear.
Our manufacturing is focused on metric pitch conveyor chains that include:
International Standards DIN 8167/ISO 1977 M series
DIN 8165/ISO 1977 FV series
SMS 1968 S series

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CHINAMFG which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CHINAMFG the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CHINAMFG flight, a system known as Thrust

WEAR

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references for additonal information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25.
For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):
 

WHY CHOOSE US 

1.     Reliable Quality Assurance System
2.     Cutting-Edge Computer-Controlled CNC Machines
3.     Bespoke Solutions from Highly Experienced Specialists 
4.     Customization and OEM Available for Specific Application
5.     Extensive Inventory of Spare Parts and Accessories
6.     Well-Developed CHINAMFG Marketing Network 
7.     Efficient After-Sale Service System

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CHINAMFG range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing, Polishing
Structure: Roller Chain, Roller Chain
Material: Alloy, Alloy
Type: Double Pitch Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gear chain

How does a gear chain handle different speeds and loads?

A gear chain is designed to handle different speeds and loads by incorporating specific features and materials:

1. Gear Ratio Selection:

– The gear ratio is the ratio of the number of teeth on the driving gear to the number of teeth on the driven gear. By selecting the appropriate gear ratio, the speed and torque can be adjusted to match the requirements of the application. Higher gear ratios provide lower speed and higher torque, while lower gear ratios offer higher speed and lower torque.

2. Gear Tooth Design:

– The tooth design of a gear chain is optimized to distribute the load evenly across the teeth. This ensures that each tooth can handle its share of the load without excessive stress concentration. The tooth profile and pitch are carefully calculated to provide efficient power transmission and minimize wear.

3. Material Selection:

– Gear chains are typically made from high-strength materials, such as alloy steel or hardened steel, to withstand the loads and stresses imposed on them. The material selection is based on the anticipated loads and the desired durability of the chain. Heat treatment processes, such as quenching and tempering, are often employed to further enhance the strength and toughness of the chain.

4. Lubrication:

– Proper lubrication is crucial for the smooth operation and longevity of a gear chain. Lubricants reduce friction and wear between the gear teeth, allowing the chain to handle higher speeds and loads with reduced heat generation. Lubrication also helps to prevent corrosion and extend the chain’s service life.

5. Chain Tension:

– Maintaining proper chain tension is essential for optimal performance. Adequate tension ensures proper engagement of the gear teeth and prevents excessive slack or binding. Chain tensioners or tensioning devices may be used to adjust the tension and compensate for any elongation or wear that occurs over time.

6. System Design:

– The overall design of the gear chain system, including the selection of supporting components such as gears, bearings, and shafts, plays a vital role in handling different speeds and loads. The system must be engineered to provide adequate strength, alignment, and support to ensure reliable operation under varying conditions.

By carefully considering gear ratio selection, tooth design, material selection, lubrication, chain tension, and system design, a gear chain can effectively handle different speeds and loads. It provides efficient power transmission and reliable performance in a wide range of applications.

gear chain

Can a gear chain be used in high-torque applications?

Yes, a gear chain can be used in high-torque applications. Gear chains are designed to transmit power and motion efficiently, even under high torque loads. However, there are certain considerations to keep in mind when using a gear chain in high-torque applications:

  • Strength and Durability: High-torque applications exert significant forces on the gear chain. Therefore, it is important to select a gear chain with sufficient strength and durability to withstand the torque without deformation or failure. The chain should be made from high-quality materials and have proper heat treatment to enhance its mechanical properties.
  • Tooth Design: The gear chain’s tooth design plays a critical role in transferring torque effectively. It is important to choose a gear chain with appropriate tooth profiles, such as involute or modified involute, that can handle high-torque loads without excessive wear or tooth damage.
  • Lubrication: Adequate lubrication is crucial for reducing friction and wear in high-torque gear chains. The lubricant should have high viscosity and film strength to withstand the high-pressure contact between the teeth. Regular lubrication and maintenance are necessary to ensure optimal performance and longevity of the gear chain.
  • Alignment and Tension: Proper alignment and tensioning of the gear chain are important to ensure smooth and efficient power transmission. Misalignment or improper tension can result in uneven load distribution, increased wear, and reduced efficiency. Regular inspection and adjustment of the chain’s alignment and tension are necessary in high-torque applications.

By considering these factors and selecting a gear chain specifically designed for high-torque applications, it is possible to utilize gear chains effectively and reliably in high-torque mechanical systems.

gear chain

How does a gear chain transmit power and motion?

A gear chain is a mechanical device that transmits power and motion from one rotating shaft to another. It consists of two or more gears connected by a chain, which engages with the teeth of the gears. When one gear is rotated, it transfers the rotational motion and torque to the other gears in the chain, resulting in the transmission of power and motion.

The teeth on the gears and the links of the chain are designed to mesh together, creating a positive engagement. As the driving gear rotates, its teeth push against the chain, causing it to move and rotate the driven gear. This transfer of motion is continuous as long as the driving gear continues to rotate.

The gear chain’s ability to transmit power and motion effectively is based on the principle of gear ratios. The ratio of the number of teeth on the driving gear to the number of teeth on the driven gear determines the speed and torque relationship between them. By selecting gears with different tooth counts, it is possible to achieve specific speed reductions or increases, as well as torque amplification or reduction.

In addition to transmitting power, gear chains can also provide speed control and direction reversal by incorporating different gear sizes or adding additional gears in the chain. This allows for versatile motion control in various applications.

Overall, gear chains are reliable and efficient mechanisms for transmitting power and motion in a wide range of mechanical systems, including automotive transmissions, industrial machinery, and power transmission equipment.

China supplier Industrial Transmission Gear Reducer Conveyor Parts C2060/C2062 Double Pitch Conveyor Chains  China supplier Industrial Transmission Gear Reducer Conveyor Parts C2060/C2062 Double Pitch Conveyor Chains
editor by CX 2023-09-21

gear chain

As one of leading gear chain manufacturers, suppliers and exporters of products, We offer gear chain and many other products.

Please contact us for details.

Mail:gear-chain.com

Manufacturer supplier exporter of gear chain

Recent Posts